Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1114, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321016

RESUMO

Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.2 × 10-3 pN overcomes the friction force resulting in insignificant adsorption, whereas lowering the drag force from 2.2 × 10-3 to 4.3 × 10-4 pN increases the adsorbed mass of hormones from zero to 0.4 ng cm-2. At a low drag force of 1.6 × 10-3 pN, the adsorbed mass of four hormones is correlated with the hormone-wall adhesive (van der Waals) force. These findings explain micropollutant adsorption in nanopores via the forces acting on the micropollutant along and perpendicular to the flow, which can be exploited for selectivity.

2.
ACS Nano ; 18(1): 355-363, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134351

RESUMO

An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K+ versus Cl- compared to pristine SWCNTs of the same 2.2 nm diameter, while hydrodynamic slip lengths decreased by more than an order of magnitude. These results suggest that the single-layer graphene inner surface may be translucent to charge-regulation and hydrodynamic-slip effects arising from h-BN on the outside of the SWCNT. Such 1D heterostructures could serve as synthetic platforms with tunable properties for exploring distinct nanofluidic phenomena and their potential applications.

3.
ACS Appl Mater Interfaces ; 14(49): 54981-54991, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36450004

RESUMO

Large-scale production of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) on metal foils promises to enable technological advancements in many fields, from functional composites to energy storage to thermal interfaces. In this work, we demonstrate growth of high-quality (G/D > 6, average diameters ∼ 2-3 nm, densities > 1012 cm-2) VA-SWCNTs on Inconel metal for use as a lithium-ion battery (LIB) anode. Scale-up of SWCNT growth on Inconel 625 to 100 cm2 exhibits nearly invariant CNT structural properties, even when synthesis is performed near atmospheric pressure, and this robustness is attributed to a growth kinetic regime dominated by the carbon precursor diffusion in the bulk gas mixture. SWCNT forests produced on large-area metal substrates at close to atmospheric pressure possess a combination of structural features that are among the best demonstrated so far in the literature for growth on metal foils. Leveraging these achievements for energy applications, we demonstrate a VA-SWCNT LIB anode with capacity >1200 mAh/g at 1.0C and stable cycling beyond 300 cycles. This robust synthesis of high-quality VA-SWCNTs on metal foils presents a promising route toward mass production of high-performance CNT devices for a broad range of applications.

4.
Adv Sci (Weinh) ; 8(3): 2001802, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552850

RESUMO

Simulations and experiments have revealed enormous transport rates through carbon nanotube (CNT) channels when a pressure gradient drives fluid flow, but comparatively little attention has been given to concentration-driven transport despite its importance in many fields. Here, membranes are fabricated with a known number of single-walled CNTs as fluid transport pathways to precisely quantify the diffusive flow through CNTs. Contrary to early experimental studies that assumed bulk or hindered diffusion, measurements in this work indicate that the permeability of small ions through single-walled CNT channels is more than an order of magnitude higher than through the bulk. This flow enhancement scales with the ion free energy of transfer from bulk solutions to a nanoconfined, lower-dielectric environment. Reported results suggest that CNT membranes can unlock dialysis processes with unprecedented efficiency.

5.
Adv Sci (Weinh) ; 7(24): 2001670, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344119

RESUMO

Enhanced fluid transport in single-walled carbon nanotubes (SWCNTs) promises to enable major advancements in many membrane applications, from efficient water purification to next-generation protective garments. Practical realization of these advancements is hampered by the challenges of fabricating large-area, defect-free membranes containing a high density of open, small diameter SWCNT pores. Here, large-scale (≈60 cm2) nanocomposite membranes comprising of an ultrahigh density (1.89 × 1012 tubes cm-2) of 1.7 nm SWCNTs as sole transport pathways are demonstrated. Complete opening of all conducting nanotubes in the composite enables unprecedented accuracy in quantifying the enhancement of pressure-driven transport for both gases (>290× Knudsen prediction) and liquids (6100× no-slip Hagen-Poiseuille prediction). Achieved water permeances (>200 L m-2 h-1 bar-1) greatly exceed those of state-of-the-art commercial nano- and ultrafiltration membranes of similar pore size. Fabricated membranes reject nanometer-sized molecules, permit fractionation of dyes from concentrated salt solutions, and exhibit excellent chemical resistance. Altogether, these SWCNT membranes offer new opportunities for energy-efficient nano- and ultrafiltration processes in chemically demanding environments.

6.
J Phys Chem Lett ; 11(15): 6150-6155, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645262

RESUMO

Ionic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]-) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores. First-principles simulations corroborate this finding and quantitatively describe how perturbations in the local IL structure, particularly the hydrogen-bond network, depend strongly on the degree of confinement. Despite significant deviations in structure under confinement, electrochemical stability remains intact, which is important for energy storage based on nanoporous carbon electrodes (e.g., supercapacitors).

7.
Sci Adv ; 5(2): eaav2568, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30783627

RESUMO

Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4'-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems.


Assuntos
Biomimética , Nanoporos , Potássio/química , Biomimética/métodos , Modelos Teóricos , Nanotecnologia , Transição de Fase
8.
Analyst ; 140(14): 4804-12, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669872

RESUMO

Hydrophobic nanopores provide a model system to study hydrophobic interactions at the nanoscale. Such nanopores could also function as a valve since they halt the transport of water and all dissolved species. It has recently been found that a hydrophobic pore can become wetted i.e. filled with condensed water or an aqueous solution of salt when a sufficiently high electric field is applied across the membrane. The wetting process is reversible thus when the voltage is lowered or switched off, the pore comes back to a closed state due to water evaporation in the pore. In this manuscript we present experimental studies on how the switching between conducting and non-conducting states can be regulated by the electrolyte concentration. Transport properties of single nanopores modified with alkyl chains of different lengths were recorded in salt concentrations between 10 mM and 1 M KCl. Nanopores modified with propyl chains exhibited gating in 10 mM KCl and were open for ionic transport for all voltages at higher salt concentrations. Nanopores modified with decyl chains did not conduct current in 10 mM and exhibited repeatable hydrophobic gating in 100 mM and 1 M KCl. The results are explained in the context of Maxwell stress in confined geometry with local surface charges, which change the shape of the water-vapor interface and promote wetting.


Assuntos
Eletrólitos/química , Interações Hidrofóbicas e Hidrofílicas , Nanoporos , Molhabilidade , Propriedades de Superfície
9.
J Am Chem Soc ; 136(28): 9902-5, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24992159

RESUMO

Biological channels embedded in cell membranes regulate ionic transport by responding to external stimuli such as pH, voltage, and molecular binding. Mimicking the gating properties of these biological structures would be instrumental in the preparation of smart membranes used in biosensing, drug delivery, and ionic circuit construction. Here we present a new concept for building synthetic nanopores that can simultaneously respond to pH and transmembrane potential changes. DNA oligomers containing protonatable A and C bases are attached at the narrow opening of an asymmetric nanopore. Lowering the pH to 5.5 causes the positively charged DNA molecules to bind to other strands with negative backbones, thereby creating an electrostatic mesh that closes the pore to unprecedentedly high resistances of several tens of gigaohms. At neutral pH values, voltage switching causes the isolated DNA strands to undergo nanomechanical movement, as seen by a reversible current modulation. We provide evidence that the pH-dependent reversible closing mechanism is robust and applicable for nanopores with opening diameters of up to 14 nm. The concept of creating an electrostatic mesh may also be applied to different organic polymers.


Assuntos
Canais de Cálcio/química , DNA/química , Polímeros/química , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Potenciais da Membrana , Membranas Artificiais , Eletricidade Estática
10.
Nano Lett ; 13(8): 3890-6, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23819625

RESUMO

The voltage-driven passage of biological polymers through nanoscale pores is an analytically, technologically, and biologically relevant process. Despite various studies on homopolymer translocation there are still several open questions on the fundamental aspects of pore transport. One of the most important unresolved issues revolves around the passage of biopolymers which vary in charge and volume along their sequence. Here we exploit an experimentally tunable system to disentangle and quantify electrostatic and steric factors. This new, fundamental framework facilitates the understanding of how complex biopolymers are transported through confined space and indicates how their translocation can be slowed down to enable future sensing methods.


Assuntos
Biopolímeros/química , DNA/química , Nanoporos , Peptídeos/química , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática
11.
J Am Chem Soc ; 133(23): 9129-35, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21561070

RESUMO

The ability to obtain sequence-specific genetic information about rare target organisms directly from complex biological samples at the point-of-care would transform many areas of biotechnology. Microfluidics technology offers compelling tools for integrating multiple biochemical processes in a single device, but despite significant progress, only limited examples have shown specific, genetic analysis of clinical samples within the context of a fully integrated, portable platform. Herein we present the Magnetic Integrated Microfluidic Electrochemical Detector (MIMED) that integrates sample preparation and electrochemical sensors in a monolithic disposable device to detect RNA-based virus directly from throat swab samples. By combining immunomagnetic target capture, concentration, and purification, reverse-transcriptase polymerase chain reaction (RT-PCR) and single-stranded DNA (ssDNA) generation in the sample preparation chamber, as well as sequence-specific electrochemical DNA detection in the electrochemical cell, we demonstrate the detection of influenza H1N1 in throat swab samples at loads as low as 10 TCID(50), 4 orders of magnitude below the clinical titer for this virus. Given the availability of affinity reagents for a broad range of pathogens, our system offers a general approach for multitarget diagnostics at the point-of-care.


Assuntos
Eletroquímica/instrumentação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Técnicas Analíticas Microfluídicas , Faringe/virologia , Sistemas Automatizados de Assistência Junto ao Leito , Manejo de Espécimes , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/isolamento & purificação , Limite de Detecção , Magnetismo , Desnaturação Proteica , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/química
12.
Anal Chem ; 81(15): 6503-8, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19586008

RESUMO

Effective systems for rapid, sequence-specific nucleic acid detection at the point of care would be valuable for a wide variety of applications, including clinical diagnostics, food safety, forensics, and environmental monitoring. Electrochemical detection offers many advantages as a basis for such platforms, including portability and ready integration with electronics. Toward this end, we report the Integrated Microfluidic Electrochemical DNA (IMED) sensor, which combines three key biochemical functionalities--symmetric PCR, enzymatic single-stranded DNA generation, and sequence-specific electrochemical detection--in a disposable, monolithic chip. Using this platform, we demonstrate detection of genomic DNA from Salmonella enterica serovar Typhimurium LT2 with a limit of detection of <10 aM, which is approximately 2 orders of magnitude lower than that from previously reported electrochemical chip-based methods.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Bacteriano/análise , Técnicas Eletroquímicas , Técnicas Analíticas Microfluídicas , Técnicas Biossensoriais/métodos , DNA Bacteriano/química , Limite de Detecção , Análise de Sequência com Séries de Oligonucleotídeos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...